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Loafing Appreciation Aversion Opposition

Stakeholder aligns all Stakeholder aligns most o Stakeholder aligns few Stakeholder aligns no
decisions with model decisions with model Vlgllance decisions with model decisions with model
Overtrust Distrust

Dietvorst, Simmons, Massey. Algorithm aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology. 2015.
Logg, Minson, Moore. Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes. 2019.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Loafing Appreciation

IIIIIIII

Judge sanctions lawyers for brief
written by A.l. with fake citations

Tesla wins first US Autopilot trial
involving fatal crash

By Dan Levine and Hyunjoo Jin
November 1, 2023 12:58 AM EDT - Updated a month ago

Cops cuff pregnant woman for carjacking after
facial recog gets it wrong, again

Not-so smart tech, or officers, it seems

A Thomas Claburn Tue 8 Aug 2023 00:24 UTC

Vigilance Aversion Opposition

FROM AFP NEWS
Brazil Judge Investigated For Al Errors In

Ruling

By AFP - Agence France Presse November 13, 2023

Is your health insurer using Al to
deny you services? Lawsuit says
errors harmed elders.

Ken Alltucker
£ » USATODAY

Published 5:18 a.m. ET Nov. 19, 2023 | Updated 11:19 a.m. ET Nov. 20, 2023

A Milton resident’s lawsuit against CVS raises
questions about the use of Al lie detectors in hiring

By Katie Johnston Globe Staff, Updated May 21, 2023, 4:56 p.m. DA f y @ ’ 95

Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Model Appropriate Access Stakeholder

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Veil of Selectivity

Model Stakeholder

Model Performance Domain Expertise
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Algorithmic resignation is the deliberate
and informed disengagement from Al
assistance In certain scenarios.

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.
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‘ Junior
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Access: 100%

Model

Bob

‘ Senior
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Access: 50%
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Hospital

Alice

‘ Doctor

Access with Disclaimer

Model

Bob

‘ Nurse

No Access

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Hospital

Alice

Model

Appropriate Access

Cost
Expertise Bob
Internal Policy ‘

External Regulation

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.
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Algorithmic resignation goes beyond the disuse ot Al systems.

't is about embedding governance
mechanisms directly within Al systems,
guiding when and how these systems

should be used or abstained from.

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.
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Benefits of Algorithmic Resignation

—

Py

Economic Efficiency Reputational Gain Legal Compliance

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.



Outline

. What is Algorithmic Resignation?
ll. Benefits of Algorithmic Resignation
lll. Considerations for Algorithmic Resignation

IV. Algorithmic Resignation in Practice



Outline

. What is Algorithmic Resignation?
ll. Benefits of Algorithmic Resignation
lll. Considerations for Algorithmic Resignation

IV. Algorithmic Resignation in Practice



Considerations for Algorithmic Resignation

((ﬂll)_7

Level of Engagement

Directionality of Stakeholder

Selectivity Incentives

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.
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Why am | discussing this with a
room full of lawyers?




Algorithmic Resignation...

Enables a new mechanism for self-regulating within organizations (e.q.,
corporate compliance can establish policies to restrict use of Al)

. Orchestrates human-machine collaboration to improve cutcomes and
processes (e.g., Al-powered content moderation tools may only escalate
content to human moderators as and when needed)

. Warrants clever interpretation of regulation like GDPR's "automated
processing” since Al may now be invoked selectively (e.g., counsel can
argue that Al was not used since it resigned in tavor of human judgement)

B*, Sargeant*. When Should Algorithms Resign? Preprint. 2023.
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Hospital
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Senior Doctor
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Reference
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Hospital
Full Access

Senior Doctor
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Reference

Diagnostic System
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Cost ‘
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When Should Algorithms Resign?
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Chapter 5

Decision Maker Learning Personalized Decision Support Policies
‘ Question: “When is it appropriate to provide decision support (e.g. ML model
predictions) to a specific decision-maker?”
Forms of support Decision-maker
a; = None

Personalize

Ali — ~
Tty we(xt) = a Yt = hAlice(xt’ a2)

Access

Alice
— 4, = ML Prediction — —_ Update ;|
using £(5, ;)
a, = LLM Summary °W..
Xt 3
Formulation: For an unseen decision-maker, which available form of decision
support would improve their decision outcome performance the most?
Set Up Core Idea of THREAD
We select a form of support a, € A using a decision support policy z,: X - A(A) Learn policy r, using a exisiting contextual bandits techniques
The decision-maker makes the final prediction: y, = h(x, a,) Include cost of g, in the objective

Performance differs under each form of support: r, (x; 1) = E, [£(y, h(x, A))]

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Chapter 5

Learning Personalized Decision Support Policies

Decision Maker

Expertise Profiles
Invariant: 74 (X; h) ~ 7 (X h),Vj € |N]
Varying: r (X h) < 7 (X h) and 7, (X3 h) < 7, (X3 h)
Strictly Better: 7, (X h) < 7y (X5 h),Vj e |N]

Personalize

Access CIFART0 Task: 3 forms of support (None, Model, or Expert Consensus) and 5 classes
MMLU Task: 2 forms of support (None or LLM) and 4 categories
Excess loss over optimal loss
CIFAR MMLU
Algorithm Invariant Strictly Better Varying
Algorithm Invariant Strictly Better Varying
H-ONLY 0.0040.01  0.09 + 0.08 0.50 & 0.06

H-MODEL 0.00 & 0.01 0.22 4+ 0.19 0.35 + 0.05 H-ONLY 0.01+0.01  0.18x0.17 0.22 = 0.12
H-CONSENSUS ~ 0.00 £0.01  0.23 +0.13 0.27 + 0.08 H-LLM 001x001 018x+021  0.12x0.17
Population 0.004+0.02  0.18 +0.08 0.15 + 0.03 POPUIa;tIO% 0.00+0.02  0.19 i 0.07 0.1 i O-OZ
THREAD-LinUCB  0.0040.01  0.17+0.05 / 0.19 4 0.05 TI%EAEIX;III{IENB 8-8‘1’ i 8-81 3-3; i 3%33 g-g; i g-%g

THREAD-KNN  0.00 + 0.01 READ- ' ' ' ' ' '

J.06 = 0.01 0.08 = 0.C

learn their policy online

It a decision-maker benetfits from having support some of the time, we can

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Chapter 5
Decision Maker Learning Personalized Decision Support Policies

Interactive Evaluation: Users interact with our tool, Modiste, which
uses THREAD to learn when users require support online.

What is Depicted in This Image? Your Score: What is Depicted in This Image? L0 What is Depicted in This Image? Your Score:
3 out of 10 correct 15 out of 27 correct 9 out of 17 correct

56% 53%

0,
30% Please decide which category is shown in the image below. Please decide which category is shown in the image below.

Please decide which category is shown in the image below.

o s B ~

Al Model Prediction EXPERTS' OPINIONS
1.0

Personalize
Access

0T, - Horse -
o."
)
|

YOUR ANSWER YOUR ANSWER YOUR ANSWER ease select a categor
SUBMIT

LinUCB KNN

Bird % o ,.” .o’
% :‘ .‘. .‘o. 0“ o
Deer o ° °
21, ';:3 Horse fa.,’“ ‘.0,31 ‘.o.?"! :,?1
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B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.




Chapter 5
Decision Maker Learning Personalized Decision Support Policies

‘ Interactive Evaluation: Users interact with our tool, Modiste, which
uses THREAD to learn when users require support online.

Similar Performance, Cheaper Cost!!!

¢ ¢
.

Personalize

Access

¢
e

KNN
A=0.75

® ® h ® h ® h h h h

B HUMAN ALONE e LLMJ

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Takeaways

Personalized access to decision support (e.g., ML models) can be learned and
improve decision-maker performance

® Forms of decision support may be offline (e.g., expert consensus)

® Sclectivity is just one way to operationalize stakeholder-model interaction
and to preempt aversive behavior

e Testbeds (ala Modiste) can validate online learning algorithms in practice



