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Team

means providing stakeholders with

relevant information about how a model works

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.
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B, Shams. Trust in Artificial Intelligence: Clinicians Are Essential. Chapter 10 in Healthcare Information Technology for Cardiovascular Medicine. 2021.
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Model Stakeholder

Algorithmic
Transparency

Explainability

means providing insight into a

model’s behavior for specitic datapoint(s)

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.
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Model Stakeholder
Explainability

A PARTNERSHIP ON Al

understand how explainability methods are used in practice

30min to 2hr semi-structured interviews with 50
individuals from 30 organizations

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Popular Explanation Styles

Feature Importance Sample Importance Counterfactuals

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Common Explanation Stakeholders

e &

Executives Engineers End Users Regulators

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Findings

1.Explainability is used for debugging internally

2.Goals of explainability are not clearly definead
within organizations

3.Technical limitations make explainability hard
to deploy in real-time

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Model Stakeholder
Explainability

A PARTNERSHIP ON Al

facilitate an inter-stakeholder conversation around explainability

Community engagement and context consideration are
important factors in deploying explainability thoughttully

B, Andrus, Xiang, Weller. Machine Learning Explainability for External Stakeholders. ICML WHI. 2020.
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Data Scientist

Explanation

Evaluation

IJCAI 2020
AAAI 2021

Assess properties of explanations
Model f: A ?

Explanation g FXYL > R

Function

Problem: “There are many of candidate explanation methods (LIME,
SHAP etc.) but it is unclear how to decide when to use each.”

Candidate Properties

Sensitivity: Do similar inputs have similar explanations?

u(fig,x,1= | D(g(f,x),g(f.2)P(2)dz

p(x,2)<r

Faithfulness: Does the explanation capture features important for prediction?

u(f.8:%,8) = Corr(—5= X, 8(f.0); () = f0rg, =)

Complexity: Is the explanation digestible?
u(f. g x) = H(x) = E;[ = In(| g(f.);])]

We go on to show how to (A) aggregate multiple explanations into a
consensus and (B) how to optimize an explanation for a selected criterion

B, Moura, Weller. Evaluating and Aggregating Feature-based Model Explanations. |IJCAI. 2020.




Policy Maker . . .
’ Assure model fairness via explanations

Model A Model B

Explanations
of Unfairness

ECAI 2020
AAAl 2022a
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Dimanov, B, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.



Policy Maker

Explanations
of Unfairness

ECAI 2020
AAAl 2022a
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Heo, Joo, Moon. Fooling Neural Network interpretations via adversarial model manipulation. NeurlPS. 2019.
Dimanov, B, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.




Model Stakeholder

Weller. Transparency: Motivations and Challenges. Chapter 2 in Explainable Al: Interpreting, Explaining and Visualizing Deep Learning. 2019
Bucinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on Al in Al-assisted Decision-making. CSCW. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.

Explainability sl

Manipulation

Overreliance



Loafing Appreciation Aversion A Opposition

Stakeholder aligns all Stakeholder aligns most o Stakeholder aligns few Stakeholder aligns no
decisions with model decisions with model Vlgllance decisions with model decisions with model

Overtrust Distrust

Dietvorst, Simmons, Massey. Algorithm aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology. 2015.
Logg, Minson, Moore. Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes. 2019.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Stakeholder aligns all Stakeholder aligns most Stakeholder aligns few Stakeholder aligns no
decisions with model decisions with model Vigilance decisions with model decisions with model

Explainability

Uncertainty

Bucinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on Al in Al-assisted Decision-making. CSCW. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Model Algorithmic Stakeholder
Transparency

Explainability

Uncertainty

B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Model Stakeholder
Uncertainty

AIES 2021
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B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021.
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Risk Executive

. CLUE: Counterfactual Latent Uncertainty Explanations

Question: "Where in my input does uncertainty about my outcome lie?”

E Probabilistic E Uncertainty E Explanation
: Model ' Quantification
; ; ; Feature Importance:
EXplaﬂationS : : : Integrated Gradients,
: : LIME, SHAP, etc.
of Uncertainty Q L Cortain
——> —I-> o :
Prediction? :
ICLR 2021 o Y q‘ | , i
AAAI 2022b . ‘@"@ E : =
: : : CLUE A

Formulation: What is the smallest change we need to make to an input, while
staying in-distribution, such that our model produces more certain predictions?

Sensitivity CLUE

Zl ue(x I zCLUE)

.

F *'
- —n Vi H(y|x,)

u(z|x,)

H(y l xO) = 1.77 H(y | xsens) = 0.12 H(ylxo) = 1.77 - —T]-Vz[:(Z) H(y | XcLuE) = 0.19

Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.



Risk Executive

‘ CLUE: Counterfactual Latent Uncertainty Explanations

Original CLUE ACLUE

"
Latent space L _

Explanations A

of Uncertainty ~ g0 ? 7 -
ICLR 2021 (Decoder uH(XIZ(k”ﬂ 1. Generate .

AAAI 2022b 3. Calculate Counterfactual
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6\—> A
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2. Prediction ' :
Y &_’ &

INCREASING DISTANCE =

(k1) High-dimensional

(k)

[ BNN p(y|x‘“’)]

Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.



Risk Executive

CLUE: Counterfactual Latent Uncertainty Explanations

Human Simulatability: Users are shown context examples and are
tasked with predicting model behavior on new datapoint.

Uncertai Certai ? :
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Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.
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Prediction
Sets

IJCAI 2022

Generate prediction sets for experts

Question: “What other outcomes are probable?”

' > Concussion Top =

R Classifier
Most Probable Label

| > {Concussion, Tumour} Set Valued

Classifier
V_J
95 % Confidence Set

PredictionSet [ (x)={ye % |P(y|x) > 7}
Conformal Prediction [FNR < a = P(y & F(x)) <a

Risk Controlling Prediction Sets P( | L(y,I'(x))] < 05) >1—-0
V———’

Risk
Vovk, Gammerman, Shafer. Algorithms in the Real World. 2005

Bates, Angelopoulos, Lei, Malik, Jordan. Distribution-Free, Risk-Controlling Prediction Sets. Journal of the ACM. 202.
Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.




Radiologist L
. Generate prediction sets for experts

Question: Do prediction sets improve human-machine team performance?
A CP Scheme!
. For CIFAR-100: /
Prediction . .
. 1. Prediction sets are perceived Metric Top-1 RAPS p value Effect Size

to be more useful / Accuracy 0.76 + 005 0.76 005 0,999 0.000

|IJCAI 2022 2. Users trust prediction sets Reported Utility 5.43 + 069 6.94 +0.69 @ 1.160

Reported Confidence 7.21 +055 7.88 £0290  (0.082 0.674

more than Top-1 classifierS\/ Reported Trust in Model 5.87 081 8.00 +0.69 (< 0.001 1.487

TT——

Observation: Some prediction sets can be quite large, rendering them useless to experts!

Predict Prediction Set
ﬂ(xtest) =0 F(xtest)

|dea: Learn a deferral policy n(x) € {0,1} and

.y . . Test Exampl
reduce prediction set size on remaining examples est Example x,

Defer Expert Prediction
ﬂ(xtest) — 1 h(xtest)

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.




Radiologist

. Generate prediction sets for experts
Using our deferral plus prediction set
Metric D-RAPS RAPS pvalue Effect Size : ,
Accuracy 0.76 £ 008 0.67 +005 0.003 0.832 SCheme’ we achieve:
o Reported Utility 7.93 +039 6.32 +060 < 0.001 1.138 1. ig ner perceived uti|ity /
Prediction Reported Confidence 7.31 020 7.28 +029  0.862 0.046 . J
Sets Reported Trust in Model 8.00 +045 6.87 061 0.006 0.754 2. igner reported trust
3. Higher team accuracy \/
IJCAI 2022
Model Uncertain — Humans Confident Model Confident — Humans Uncertain

*
Model ;.___ N Model ] N '_
Human |} i S Human . - n _ u
Class Class Class Class | Class " Class
D-RAPS Defer Defer Defer D-RAPS {Deer} {Bird, Cat} {Airplane}
RAPS {Airplane, Ship, Automobile} {Horse, Dog, Cat} {Bird, Horse, Deer} RAPS {Deer, Horse} {Bird, Airplane, Cat} { Airplane, Ship}

We also (A) prove that set size is reduced for the non-deferred examples and
(B) optimize for additional set properties (e.g., sets with similar labels).

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.



Takeaways

Algorithmic transparency is important but difficult
® Cxplanations are desirable in theory but are hard to operationalize

e |Uncertainty can be treated as a form of transparency that can be used to
alter stakeholder interaction with model

¢ \We need to consider the context of transparency carefully to improve
outcomes of human-machine teams

Convening is powertul tool to motivate technical and socio-technical research
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Deferral Policy

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.



Values
Preferences

Expectations

Model 299 Stakeholder

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.



Model Stakeholder
Feedback

Observation Domain

Hertwig, Erev. The description-experience gap in risky choice. Trends in Cognitive Science. 2009.
Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.



Model Stakeholder

Dataset Loss Parameter

Update

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.



Feedback-Update Taxonomy

Model Stakeholder
Feedback

Observation Domain

Dataset Loss Parameter

Update

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.



Future Directions

® Open technical questions around algorithmic transparency can be
addressed with new methods and well-designed user studies

® Study the socio-technical nature and societal implications of providing
transparency in specific contexts

® Conduct general research into human-machine teams
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Human-Machine
Team

Procedural
Model . Stakeholder
ransparency

Algorithmic
Transparency

Feedback

Update

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.
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Thank you for listening! Questions?
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