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Overview
• We propose a method to combine feature attributions via [1, 2] with a local neighborhood influence measure proposed in [3]. Specifically, we weight

feature attributions of k training points by their importance to a test point and aggregate the k attributions into a consensus attribution.
• We also explore aggregating various feature attribution techniques in order to maximize a pre-selected evaluation criteria.

Weighting Explanations
We can explain a test point, xtest, by analyzing
and aggregating attributions of training points
near the test point. Using the approximation in
[3], we define the influence weight, ρj ∈ R≥0, of
training point, x(j), on test point, xtest as:

ρj =
d

dε
L(fε,x(j) , xtest)

∣∣
ε=0

We then select the local neighborhood, Nk, of
the k most influential training points on xtest.

Nk(xtest,D) = arg max
N⊂D,|N |=k

∑
x(j)∈N

ρj

Suppose we get a Shapley value explanation, φj ,
for every point in Nk. [4] proposed the weighted
Shapley value which would weigh every contri-
bution by a player’s weight. In our case, we
weigh each feature’s contribution from every in-
fluential point (x(j)) by its influence weight (ρj).

φi(x
(j)) =

∑
S⊆F\{i}

ρj
ρ
R (fT (xT )− fS(xS))

Let ρ =
∑
i∈S ρi. Since Shapley values allow for

scaling and additivity, we can sum attributions
across all influential datapoints and simplify.

ASHAP (φ,Nk) =
∑

x(j)∈Nk

ρj
ρ
φj

A similar derivation can be followed for Inte-
grated Gradients. We could have also lever-
aged traditional rank aggregation techniques
(i.e., Borda Count and Markov Chains) to com-
bine the k attributions.

Experimentation
We run tabular experiments to show the utility of weighted explanations (particularly weighted
Shapley values) and to show the intuitive results of aggregating various explanations with images.

MIMIC-III
We explain a sepsis prediction model trained on
a dataset [5] consisting of 11,791 hospital admis-
sions with 38 semantically meaningful features
(physical descriptors, lab results, indicators).

Faithfulness via recall: Let F ′ ⊂ F be the top
b features of an interpretable model h. Let Si be
the top b features from εA. We measure:

faithfulness =
1

N

N∑
i=1

|Si ∩ F ′|
|F ′|

Model Acc. SHAP IG ASHAP AIG

1 HL-S 85.3 60 29 68 37
1 HL-R 82.8 62 33 69 47
2 HL-S 86.7 61 34 75 41
2 HL-R 87.2 55 35 64 35
3 HL-S 83 64 31 68 41
3 HL-R 87 55 38 65 48

Histogram of accumulated rankings for represen-
tative MIMIC features:

Cumulative count vs Ranking of Features

ImageNet
We attempted to learn an aggregate explanation
that maximized sensitivity [6].

We define sensitivity as the Pearson correlation
coefficient between the sum of the attributions
(
∑d
i=1 εi) and the residual effect on the model

output of randomly zeroing out pixels in the
original image f(x)− f(x[S=0]).

Below is the result of aggregating saliency maps
subject to maximizing sensitivity.

Clockwise from Top Left: Original, Aggregate,
Integrated Gradients, SmoothGrad

Aggregating Across Explanations
We also explore aggregating different explanation techniques to maximize user-defined criteria. Sup-
pose a user wants to find an aggregate explanation, εagg, that maximizes both faithfulness and
sensitivity equally. Alternatively, users can add weights on individual criteria. The simplest form of
εagg would be a convex combination of the different explanation techniques.

εagg = wTΦ

ΦT =

 LIME IG · · · SHAP


To learn εagg, we can maximize the two criteria as follows.

arg max
w

N∑
i=1

faithfulness(wTΦi) + sensitivity(wTΦi)

Alternatively, we can use traditional rank aggregation to aggregate Φ into a singular explanation
εagg. We use the following formulation based on centroids [7, 8] with respect to some distance
d : E × E 7→ R and then change the criteria maximization accordingly for any arbitrary metric.

εagg = A (g,Nk) ∈ arg min
ε∈E

∑
x∈Nk

d(ε, g(x))

max
N∑
i=1

metric(εagg)
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