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Central Question

Given a particular test point z, if we were to find an alternative classifier in the same 
model class fitted to the same training data, how much training accuracy would we have 
to give up so that the prediction for the test point z would change?
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Related Work

Rashomon Effect [Breiman 2001]: Multiple models may fit the training data 
well 

Rashomon Set [Fisher et al. 2019]: Set of models with near-optimal accuracy 

Predictive Multiplicity [Marx et al. 2019]: Analyzes the difference in 
predictions from models in a Rashomon set 



Notation

Training Dataset Family of Functions
ℱ

Average Loss 
(Empirical Risk)

𝒟 = {(xi, yi)}n
i=1

R̂( f ) =
1
n

n

∑
i=1

ℓ (f (xi), yi)



Our Approach

Empirical Risk Minimization 
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Some Results

Two Overlapping Gaussians 
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Red: Incorrect in both 

Blue: Originally right, now wrong 
Yellow: Originally wrong, now right



Some Results

Two Overlapping Gaussians 

Green: Correct in both 
Red: Incorrect in both 

Blue: Originally right, now wrong 
Yellow: Originally wrong, now right

Dataset
Average 

Counterfactual 
Accuracy

Average 
number of 

predicted label 
flips

Adult 0.667% ~225

COMPAS 1.437% ~260



Future Work

• Faster computation: Moving beyond a warm start from the parameters of 
the old model, how can avoid recomputing the entire objective from 
scratch? 



Future Work

• Faster computation: Moving beyond a warm start from the parameters of 
the old model, how can avoid recomputing the entire objective from 
scratch? 

• Experimentation: What do ML practitioners learn about their datasets from 
knowing this quantity for their training data? 
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