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Overview

@ Why are feature level explanations important (in medicine)?
9 What are existing feature-based explanation techniques?
© How do we evaluate feature-based explanations?

@ How do we aggregate feature-based explanations?

© Future Work
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Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.

Umang Bhatt (Cambridge) Explainability via Aggregation 3/14



Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.
@ Doctors leverage vital signs and indicators to diagnose

Umang Bhatt (Cambridge) Explainability via Aggregation 3/14



Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.
@ Doctors leverage vital signs and indicators to diagnose
e This translates to a semantically meaningful feature vector x

Umang Bhatt (Cambridge) Explainability via Aggregation 3/14



Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.
@ Doctors leverage vital signs and indicators to diagnose
e This translates to a semantically meaningful feature vector x

@ Doctors leverage insights from past patients to better diagnose
current patients

Umang Bhatt (Cambridge) Explainability via Aggregation 3/14



Why are feature level explanations important (in medicine)?

Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.
@ Doctors leverage vital signs and indicators to diagnose
e This translates to a semantically meaningful feature vector x

@ Doctors leverage insights from past patients to better diagnose
current patients

e This translates to influential points in the training distribution

Umang Bhatt (Cambridge) Explainability via Aggregation

3/14



Why are feature level explanations important (in medicine)?

Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.
@ Doctors leverage vital signs and indicators to diagnose
e This translates to a semantically meaningful feature vector x

@ Doctors leverage insights from past patients to better diagnose
current patients

e This translates to influential points in the training distribution

Umang Bhatt (Cambridge) Explainability via Aggregation

3/14



Why are feature level explanations important (in medicine)?

Medical Diagnostic Tasks

If we understand how a doctor reasons to a diagnosis, then we can build
models that mimic that decision making.

@ Doctors leverage vital signs and indicators to diagnose
e This translates to a semantically meaningful feature vector x

@ Doctors leverage insights from past patients to better diagnose
current patients

e This translates to influential points in the training distribution

We ask: can we validate the above intuition on a trained predictor, f,
using feature importance and sample importance?
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What are existing feature-based explanation techniques?

Common feature-based explanations

SHAP (Lundberg and Lee. NeurlPS 2017)

1 F—1y~1
ga=8(F.x)i =6 =1 scry (s)  (Flxsugy) — f(xs))
Provides a “fair” distribution of contribution over all features, since Shapley
values satisfy efficiency, symmetry, additivity, and dummy (zero).
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SHAP (Lundberg and Lee. NeurlPS 2017)
-1
g, =8(f.x)i=¢;= ﬁ 2USCA\(7} (Fs 1) (F(xsugy) — F(xs))

Provides a “fair” distribution of contribution over all features, since Shapley
values satisfy efficiency, symmetry, additivity, and dummy (zero).

Integrated Gradients (Sundarajan et al. ICML 2017)

Accumulates the gradients along a straight line path between x and X, where
f(X) = 0, and satisfies completeness, 27:1 g(f,x); = f(x) — f(x).

LIME (Ribeiro et al. KDD 2016)
g(f,x)j = argmin L(f, g, 7x) + Q(g)
geg

Local surrogate model, g, to approximate original model, f, in some kernelized
region 7, and encourages sparsity by keeping model complexity, Q(g), low

Umang Bhatt (Cambridge) Explainability via Aggregation 4/14



How do we evaluate feature-based explanations?

Evaluating explanations
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Sensitivity

Do similar inputs have similar explanations?

pave(F. g x,r) = [ D(g(x),8(2))Px(2)dz

p(x,2)<r

pmax(f. g, x,r) = p(xmg)><<rD(g(X), g(2))

Let D be the distance between explanations and p be the distance between inputs
v

Faithfulness

Does the explanation capture features important to the prediction?
pe(f. g, x,S) = corr(s; Cies 8(F, )i, F(x) = F(X[x,=x,]))

Fix a subset size and randomly sample subsets of that size from x to estimate the
Pearson Correlation Coefficient

v
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How do we evaluate feature-based explanations?

Evaluating explanations (cont.)
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Is the explanation digestible? We define an attribution contribution distribution:
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How do we evaluate feature-based explanations?

Evaluating explanations (cont.)

Complexity

Is the explanation digestible? We define an attribution contribution distribution:

Pa= {zﬁfég ot z‘ngz') zlg\(&x» }
pc(f.g.x) = H(x) =E;[ - 'n(E”A( )] = Z, 1 Pa(i) In(Pa(i))

The least complex explanation is one where g(x); = 1 and the most complex
explanation is one where g(x); = 1.
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Aggregating Existing Techniques

Can we learn an aggregate explanation of existing techniques that does
better with respect to a criterion of interest? An approach to study g,
can be to set the problem up as follows:

Bage = argmax u(f, g), st. g = h(Gm)
geg
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Can we learn an aggregate explanation of existing techniques that does
better with respect to a criterion of interest? An approach to study g,
can be to set the problem up as follows:

Bage = argmax u(f, g), st. g = h(Gm)
geg

Three candidate methods for h(-).
o Convex Combination: g,,, = wg; + (1 — w)g;

o Centroid Aggregation: g,,, € arg mingcg >, d(g.gi)

o Bayesian Optimization: max (g ,g,) Where
gaggeg

k(g &) = Ex-p, [k(g,-(X), gj(X))] = Eyp, {e‘é”g’(x)‘gf(")”ﬂ
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Generalized Aggregation

Convex Combination

Bagg = w'G

G = | SHAP; LIME,
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Generalized Aggregation

Convex Combination

R
gagg =w G
GT = SHAP; LIME; --- IGp,
m
Wagg € arg max g ww’ Gy
w

i=1
V.
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Generalized Aggregation

Classical Rank Aggregation
Gm = {SHAP1, LIME;, . . . 1G,}
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g agg

Boe C2gmin > d(g.8))
g,-Egm
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Aggregating Local Explanations
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AVA: Aggregate Valuation of Antecedents

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory
1987) to aggregate feature-based explanations with lower sensitivity?
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© Find k nearest neighbors, Ny, of xest and their weights, pj
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AVA: Aggregate Valuation of Antecedents

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory
1987) to aggregate feature-based explanations with lower sensitivity?

© Find k nearest neighbors, Ny, of xest and their weights, pj

pPj = %‘C(f;,x(j)axtest)‘ezo
Ni(Xest, D) = arg max Z pj
NCD’W|:ka)eN

@ Calculate the attributions, g, for all points in N

1 F—1\"!
gci:¢i:m Z < S > (f(xsugiy) — f(xs))

SCR\{i}
© Aggregate the k explanations into a consensus, g4,
Pj i
8agg = E ;gc
XU)ENk
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Why aggregate?
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Why aggregate?

@ Each training point has its own
“learned” attribution

@ Aggregate explanation now has
lower sensitivity

@ Resulting attribution uses
motivating reasoning of a doctor

o SUPER SUPER cheap to
compute
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Minimizing Complexity

Region Shrinking Method
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Minimizing Complexity

Region Shrinking Method Gradient-Descent Style Method

g4 91
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Conclusion

Summary
© Aggregate local explanations with classical rank aggregation or via
convex combination can be useful
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Conclusion

Summary
© Aggregate local explanations with classical rank aggregation or via
convex combination can be useful
@ Aggregating Shapley value explanations results in a Shapley value
© We can learn aggregate explanations to lower sensitivity and
complexity
Future Work
@ Axiomatic Aggregation
o If g4,...,8, satisfy Axiom R, then g 4 satisfies R.

@ Are feature-based explanations even useful?
o Consider counterfactuals, natural language explanations, etc.

© Working with medical experts to find a g*
@ Multi-Objective optimization
o Resulting Setup

max faithfulness(g ,,, ) + sensitivity(g .., )
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