Evaluating and Aggregating Feature-based Model Explanations

Umang Bhatt

Carnegie Mellon University and University of Cambridge

Joint Work with Adrian Weller (Cambridge) and José Moura (CMU)

usb20@cam.ac.uk

Overview

- Why are feature level explanations important (in medicine)?
- What are existing feature-based explanation techniques?
- 3 How do we evaluate feature-based explanations?
- 4 How do we aggregate feature-based explanations?
- Future Work

If we understand how a doctor reasons to a diagnosis, then we can build models that mimic that decision making.

Doctors leverage vital signs and indicators to diagnose

- Doctors leverage vital signs and indicators to diagnose
 - ullet This translates to a semantically meaningful feature vector $oldsymbol{x}$

- Doctors leverage vital signs and indicators to diagnose
 - ullet This translates to a semantically meaningful feature vector $oldsymbol{x}$
- Doctors leverage insights from past patients to better diagnose current patients

- Doctors leverage vital signs and indicators to diagnose
 - ullet This translates to a semantically meaningful feature vector $oldsymbol{x}$
- Doctors leverage insights from past patients to better diagnose current patients
 - This translates to influential points in the training distribution

- Doctors leverage vital signs and indicators to diagnose
 - ullet This translates to a semantically meaningful feature vector $oldsymbol{x}$
- Doctors leverage insights from past patients to better diagnose current patients
 - This translates to influential points in the training distribution

If we understand how a doctor reasons to a diagnosis, then we can build models that mimic that decision making.

- Doctors leverage vital signs and indicators to diagnose
 - ullet This translates to a semantically meaningful feature vector $oldsymbol{x}$
- Doctors leverage insights from past patients to better diagnose current patients
 - This translates to influential points in the training distribution

We ask: can we validate the above intuition on a trained predictor, \boldsymbol{f} , using feature importance and sample importance?

Common feature-based explanations

SHAP (Lundberg and Lee. NeurIPS 2017)

$$\mathbf{g}_{ci} = \mathbf{g}(\mathbf{f}, \mathbf{x})_i = \phi_i = \frac{1}{|F|} \sum_{S \subseteq F \setminus \{i\}} {\binom{F-1}{S}}^{-1} \left(\mathbf{f}(\mathbf{x}_{S \cup \{i\}}) - \mathbf{f}(\mathbf{x}_S) \right)$$

Provides a "fair" distribution of contribution over all features, since Shapley values satisfy **efficiency**, symmetry, additivity, and dummy (zero).

Common feature-based explanations

SHAP (Lundberg and Lee. NeurIPS 2017)

$$\mathbf{g}_{ci} = \mathbf{g}(\mathbf{f}, \mathbf{x})_i = \phi_i = \frac{1}{|F|} \sum_{S \subseteq F \setminus \{i\}} {F-1 \choose S}^{-1} (\mathbf{f}(\mathbf{x}_{S \cup \{i\}}) - \mathbf{f}(\mathbf{x}_S))$$

Provides a "fair" distribution of contribution over all features, since Shapley values satisfy **efficiency**, symmetry, additivity, and dummy (zero).

Integrated Gradients (Sundarajan et al. ICML 2017)

Accumulates the gradients along a straight line path between \mathbf{x} and $\bar{\mathbf{x}}$, where $\mathbf{f}(\bar{\mathbf{x}}) \approx 0$, and satisfies **completeness**, $\sum_{i=1}^{d} \mathbf{g}(\mathbf{f}, \mathbf{x})_i = \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})$.

Common feature-based explanations

SHAP (Lundberg and Lee. NeurIPS 2017)

$$\mathbf{g}_{ci} = \mathbf{g}(\mathbf{f}, \mathbf{x})_i = \phi_i = \frac{1}{|F|} \sum_{S \subseteq F \setminus \{i\}} {F-1 \choose S}^{-1} \left(\mathbf{f}(\mathbf{x}_{S \cup \{i\}}) - \mathbf{f}(\mathbf{x}_S) \right)$$

Provides a "fair" distribution of contribution over all features, since Shapley values satisfy **efficiency**, symmetry, additivity, and dummy (zero).

Integrated Gradients (Sundarajan et al. ICML 2017)

Accumulates the gradients along a straight line path between x and \bar{x} , where $f(\bar{x}) \approx 0$, and satisfies **completeness**, $\sum_{i=1}^{d} g(f, x)_i = f(x) - f(x)$.

LIME (Ribeiro et al. KDD 2016)

$$oldsymbol{g}(oldsymbol{f},oldsymbol{x})_i = \mathop{\mathrm{arg\,min}}_{oldsymbol{g} \in \mathcal{G}} \ \mathcal{L}(oldsymbol{f},oldsymbol{g},\pi_{oldsymbol{x}}) + \Omega(oldsymbol{g})$$

Local surrogate model, \mathbf{g} , to approximate original model, f, in some kernelized region π_{\times} , and encourages sparsity by keeping model complexity, $\Omega(\mathbf{g})$, low

Sensitivity

Do similar inputs have similar explanations?

Sensitivity

Do similar inputs have similar explanations?

Sensitivity

Do similar inputs have similar explanations?

$$\mu_{\mathsf{AVG}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{x}, r) = \int\limits_{\rho(\boldsymbol{x}, \boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{z})) \mathbb{P}_{\boldsymbol{x}}(\boldsymbol{z}) d\boldsymbol{z}$$
$$\mu_{\mathsf{MAX}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{x}, r) = \max_{\rho(\boldsymbol{x}, \boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{z}))$$

Let D be the distance between explanations and ρ be the distance between inputs

Sensitivity

Do similar inputs have similar explanations?

$$\mu_{\mathsf{AVG}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{x}, r) = \int\limits_{\rho(\boldsymbol{x}, \boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{z})) \mathbb{P}_{\boldsymbol{x}}(\boldsymbol{z}) d\boldsymbol{z}$$

$$\mu_{\mathsf{MAX}}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{x},r) = \max_{\rho(\boldsymbol{x},\boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}),\boldsymbol{g}(\boldsymbol{z}))$$

Let ${\it D}$ be the distance between explanations and ρ be the distance between inputs

Faithfulness

Does the explanation capture features important to the prediction?

Sensitivity

Do similar inputs have similar explanations?

$$\mu_{\mathsf{AVG}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{x}, r) = \int\limits_{\rho(\boldsymbol{x}, \boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{z})) \mathbb{P}_{\boldsymbol{x}}(\boldsymbol{z}) d\boldsymbol{z}$$

$$\mu_{\mathsf{MAX}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{x}, r) = \max_{\rho(\boldsymbol{x}, \boldsymbol{z}) \leq r} D(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{z}))$$

Let ${\it D}$ be the distance between explanations and ρ be the distance between inputs

Faithfulness

Does the explanation capture features important to the prediction?

$$\mu_{\mathsf{F}}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{x},S) = \operatorname{corr}(\frac{1}{|S|}\sum_{i\in S}\boldsymbol{g}(\boldsymbol{f},\boldsymbol{x})_i,\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_{[\boldsymbol{x}_s=\bar{\boldsymbol{x}}_s]}))$$

Fix a subset size and randomly sample subsets of that size from x to estimate the Pearson Correlation Coefficient

Complexity

Is the explanation digestible?

Complexity

Is the explanation digestible? We define an attribution contribution distribution:

$$\mathbb{P}_{A} = \left\{ \frac{|\mathbf{g}(\mathbf{x})_{1}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|}, \frac{|\mathbf{g}(\mathbf{x})_{2}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|}, \dots, \frac{|\mathbf{g}(\mathbf{x})_{d}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|} \right\}$$

$$\mu_{C}(\mathbf{f}, \mathbf{g}, \mathbf{x}) = H(\mathbf{x}) = \mathbb{E}_{i} \left[-\ln(\mathbb{P}_{A}(i)) \right] = -\sum_{i=1}^{d} \mathbb{P}_{A}(i) \ln(\mathbb{P}_{A}(i))$$

Complexity

Is the explanation digestible? We define an attribution contribution distribution:

$$\mathbb{P}_{A} = \left\{ \frac{|\mathbf{g}(\mathbf{x})_{1}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|}, \frac{|\mathbf{g}(\mathbf{x})_{2}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|}, \dots, \frac{|\mathbf{g}(\mathbf{x})_{d}|}{\sum\limits_{j \in [d]} |\mathbf{g}(\mathbf{x})_{j}|} \right\}$$

$$\mu_{C}(\mathbf{f}, \mathbf{g}, \mathbf{x}) = H(\mathbf{x}) = \mathbb{E}_{i} \left[-\ln(\mathbb{P}_{A}(i)) \right] = -\sum_{i=1}^{d} \mathbb{P}_{A}(i) \ln(\mathbb{P}_{A}(i))$$

The least complex explanation is one where $\mathbf{g}(\mathbf{x})_i = 1$ and the most complex explanation is one where $\mathbf{g}(\mathbf{x})_i = \frac{1}{d}$.

Can we learn an aggregate explanation of existing techniques that does better with respect to a criterion of interest? An approach to study g_{agg} can be to set the problem up as follows:

$$\label{eq:gagg} {\boldsymbol{g}}_{\text{agg}} = \mathop{\arg\max}_{{\boldsymbol{g}} \in \mathcal{G}} \, \mu({\boldsymbol{f}},{\boldsymbol{g}}), \; \text{s.t. } {\boldsymbol{g}} = h(\mathcal{G}_{\textit{m}})$$

Can we learn an aggregate explanation of existing techniques that does better with respect to a criterion of interest? An approach to study g_{agg} can be to set the problem up as follows:

$$m{g}_{ ext{agg}} = \mathop{\mathrm{arg\;max}}_{m{g} \in \mathcal{G}} \mu(m{f}, m{g}), \; ext{s.t.} \; m{g} = h(\mathcal{G}_m)$$

Three candidate methods for $h(\cdot)$.

• Convex Combination: $\boldsymbol{g}_{agg} = w\boldsymbol{g}_1 + (1-w)\boldsymbol{g}_2$

Can we learn an aggregate explanation of existing techniques that does better with respect to a criterion of interest? An approach to study $\boldsymbol{g}_{\text{agg}}$ can be to set the problem up as follows:

$$m{g}_{ ext{agg}} = \mathop{\mathrm{arg\;max}}_{m{g} \in \mathcal{G}} \mu(m{f}, m{g}), \; ext{s.t.} \; m{g} = h(\mathcal{G}_m)$$

Three candidate methods for $h(\cdot)$.

- Convex Combination: $\boldsymbol{g}_{agg} = w\boldsymbol{g}_1 + (1-w)\boldsymbol{g}_2$
- Centroid Aggregation: $\mathbf{g}_{agg} \in arg \min_{\mathbf{g} \in \mathcal{G}} \sum_{i=1}^{m} d(\mathbf{g}, \mathbf{g}_i)$

Can we learn an aggregate explanation of existing techniques that does better with respect to a criterion of interest? An approach to study $\boldsymbol{g}_{\text{agg}}$ can be to set the problem up as follows:

$$m{g}_{\mathrm{agg}} = rg\max_{m{g} \in \mathcal{G}} \mu(m{f}, m{g}), \; \mathrm{s.t.} \; m{g} = h(\mathcal{G}_m)$$

Three candidate methods for $h(\cdot)$.

- Convex Combination: $\boldsymbol{g}_{agg} = w \boldsymbol{g}_1 + (1 w) \boldsymbol{g}_2$
- Centroid Aggregation: $\mathbf{g}_{\text{agg}} \in \arg\min_{\mathbf{g} \in \mathcal{G}} \sum_{i=1}^{m} d(\mathbf{g}, \mathbf{g}_{i})$
- \bullet Bayesian Optimization: $\max_{{\boldsymbol g}_{\textit{agg}} \in \mathcal{G}} \mu({\boldsymbol g}_{\textit{agg}})$ where

$$k(\boldsymbol{g}_i, \boldsymbol{g}_j) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[k(\boldsymbol{g}_i(\boldsymbol{x}), \boldsymbol{g}_j(\boldsymbol{x})) \right] = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[e^{-\frac{1}{2}||\boldsymbol{g}_i(\boldsymbol{x}) - \boldsymbol{g}_j(\boldsymbol{x})||^2} \right]$$

Convex Combination

$$\mathbf{g}_{agg} = w^{T} G$$

$$G^{T} = \begin{pmatrix} & | & & | & & | \\ SHAP_{1} & LIME_{2} & \cdots & IG_{m} & & | \\ & | & & | & & | \end{pmatrix}$$

Convex Combination

$$\mathbf{g}_{agg} = w^{T} G$$

$$G^{T} = \begin{pmatrix} & | & | & | \\ \mathsf{SHAP}_{1} & \mathsf{LIME}_{2} & \cdots & \mathsf{IG}_{m} \\ | & | & | \end{pmatrix}$$

$$w_{agg} \in \arg\max_{w} \sum_{i=1}^{m} \mu(w^{T} G_{i})$$

$$\mathcal{G}_m = \{SHAP_1, LIME_2, \dots IG_m\}$$

$$\mathcal{G}_m = \{SHAP_1, LIME_2, \dots IG_m\}$$

$$oldsymbol{g}_c^S = egin{bmatrix} 1 & -2 & 7 \end{bmatrix}
ightarrow oldsymbol{g}_m^S = egin{bmatrix} .1 & .2 & .7 \end{bmatrix}
ightarrow \mathrm{rank}^S = egin{bmatrix} C & B & A \end{bmatrix}$$

$$\mathcal{G}_m = \{SHAP_1, LIME_2, \dots IG_m\}$$

$$oldsymbol{g}_{c}^{S} = \begin{bmatrix} 1 & -2 & 7 \end{bmatrix}
ightarrow oldsymbol{g}_{m}^{S} = \begin{bmatrix} .1 & .2 & .7 \end{bmatrix}
ightarrow \mathrm{rank}^{S} = \begin{bmatrix} C & B & A \end{bmatrix}$$

$$\operatorname{\mathsf{rank}}^{\mathcal{S}_1} = \begin{bmatrix} \mathsf{C} & \mathsf{B} & \mathsf{A} \end{bmatrix} \ \operatorname{\mathsf{rank}}^{\mathcal{S}_2} = \begin{bmatrix} \mathsf{C} & \mathsf{A} & \mathsf{B} \end{bmatrix} \ \operatorname{\mathsf{rank}}^{\mathcal{S}_3} = \begin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} \end{bmatrix}$$

$$\mathcal{G}_m = \{SHAP_1, LIME_2, \dots IG_m\}$$

$$oldsymbol{g}_{c}^{S} = \begin{bmatrix} 1 & -2 & 7 \end{bmatrix}
ightarrow oldsymbol{g}_{m}^{S} = \begin{bmatrix} .1 & .2 & .7 \end{bmatrix}
ightarrow \mathrm{rank}^{S} = \begin{bmatrix} C & B & A \end{bmatrix}$$

$$\mathsf{rank}^{\mathcal{S}_1} = \begin{bmatrix} \textit{C} & \textit{B} & \textit{A} \end{bmatrix} \; \; \mathsf{rank}^{\mathcal{S}_2} = \begin{bmatrix} \textit{C} & \textit{A} & \textit{B} \end{bmatrix} \; \; \mathsf{rank}^{\mathcal{S}_3} = \begin{bmatrix} \textit{A} & \textit{B} & \textit{C} \end{bmatrix}$$

Borda Count:
$$\mathbf{g}_{agg} = \operatorname{rank}^{agg} = \begin{bmatrix} C & A & B \end{bmatrix}$$

$$\mathcal{G}_m = \{SHAP_1, LIME_2, \dots IG_m\}$$

$$oldsymbol{g}_{c}^{S} = \begin{bmatrix} 1 & -2 & 7 \end{bmatrix}
ightarrow oldsymbol{g}_{m}^{S} = \begin{bmatrix} .1 & .2 & .7 \end{bmatrix}
ightarrow \mathrm{rank}^{S} = \begin{bmatrix} C & B & A \end{bmatrix}$$

$$\mathsf{rank}^{\mathcal{S}_1} = \begin{bmatrix} \textit{C} & \textit{B} & \textit{A} \end{bmatrix} \; \; \mathsf{rank}^{\mathcal{S}_2} = \begin{bmatrix} \textit{C} & \textit{A} & \textit{B} \end{bmatrix} \; \; \mathsf{rank}^{\mathcal{S}_3} = \begin{bmatrix} \textit{A} & \textit{B} & \textit{C} \end{bmatrix}$$

Borda Count:
$$\mathbf{g}_{agg} = \operatorname{rank}^{agg} = \begin{bmatrix} C & A & B \end{bmatrix}$$

$$oldsymbol{g}_{agg} \in \arg\min_{oldsymbol{g}} \sum_{oldsymbol{g}_i \in \mathcal{G}_m} d(oldsymbol{g}, oldsymbol{g}_i)$$

Aggregating Local Explanations

Aggregating Local Explanations

Aggregating Local Explanations

Aggregating Local Explanations

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory 1987) to aggregate feature-based explanations with lower sensitivity?

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory 1987) to aggregate feature-based explanations with lower sensitivity?

① Find k nearest neighbors, \mathcal{N}_k , of x_{test} and their weights, ρ_j

$$\rho_{j} = \frac{d}{d\epsilon} \mathcal{L}(f_{\epsilon, x^{(j)}}, x_{\text{test}})\big|_{\epsilon = 0}$$

$$\mathcal{N}_k(x_{\mathsf{test}}, \mathcal{D}) = \mathop{\mathsf{arg\,max}}_{\mathcal{N} \subset \mathcal{D}, |\mathcal{N}| = k} \sum_{\chi(j) \in \mathcal{N}} \rho_j$$

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory 1987) to aggregate feature-based explanations with lower sensitivity?

 $lacksquare{1}$ Find k nearest neighbors, \mathcal{N}_k , of x_{test} and their weights, ho_j

$$\begin{aligned} \rho_j &= \frac{d}{d\epsilon} \mathcal{L}(f_{\epsilon, x^{(j)}}, x_{\mathsf{test}}) \big|_{\epsilon = 0} \\ \mathcal{N}_k(x_{\mathsf{test}}, \mathcal{D}) &= \underset{\mathcal{N} \subset \mathcal{D}, |\mathcal{N}| = k}{\mathsf{arg}} \max_{x^{(j)} \in \mathcal{N}} \rho_j \end{aligned}$$

2 Calculate the attributions, \boldsymbol{g}_c , for all points in \mathcal{N}_k

$$\mathbf{g}_{ci} = \phi_i = \frac{1}{|F|} \sum_{S \subseteq F \setminus \{i\}} {\binom{F-1}{S}}^{-1} \left(f(x_{S \cup \{i\}}) - f(x_S) \right)$$

Can we use weighted Shapley values (Kalai et al. Journal of Game Theory 1987) to aggregate feature-based explanations with lower sensitivity?

 $lacksquare{1}$ Find k nearest neighbors, \mathcal{N}_k , of x_{test} and their weights, ho_j

$$\begin{aligned} \rho_j &= \frac{d}{d\epsilon} \mathcal{L}(f_{\epsilon, x^{(j)}}, x_{\mathsf{test}}) \big|_{\epsilon = 0} \\ \mathcal{N}_k(x_{\mathsf{test}}, \mathcal{D}) &= \underset{\mathcal{N} \subset \mathcal{D}, |\mathcal{N}| = k}{\mathsf{arg}} \max_{x^{(j)} \in \mathcal{N}} \rho_j \end{aligned}$$

2 Calculate the attributions, \boldsymbol{g}_c , for all points in \mathcal{N}_k

$$\mathbf{g}_{ci} = \phi_i = \frac{1}{|F|} \sum_{S \subseteq F \setminus \{i\}} {\binom{F-1}{S}}^{-1} \left(f(x_{S \cup \{i\}}) - f(x_S) \right)$$

3 Aggregate the k explanations into a consensus, \boldsymbol{g}_{agg}

$$oldsymbol{g}_{\mathsf{agg}} = \sum_{\mathsf{x}^{(j)} \in \mathcal{N}_{k}} rac{
ho_{j}}{
ho} oldsymbol{g}_{c}^{j}$$

 Each training point has its own "learned" attribution

- Each training point has its own "learned" attribution
- Aggregate explanation now has lower sensitivity

- Each training point has its own "learned" attribution
- Aggregate explanation now has lower sensitivity
- Resulting attribution uses motivating reasoning of a doctor

- Each training point has its own "learned" attribution
- Aggregate explanation now has lower sensitivity
- Resulting attribution uses motivating reasoning of a doctor
- SUPER SUPER cheap to compute

Minimizing Complexity

Region Shrinking Method

Minimizing Complexity

Region Shrinking Method

Gradient-Descent Style Method

Summary

 Aggregate local explanations with classical rank aggregation or via convex combination can be useful

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

Future Work

Axiomatic Aggregation

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

- Axiomatic Aggregation
 - If g_1, \ldots, g_n satisfy Axiom R, then g_A satisfies R.

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

- Axiomatic Aggregation
 - If $\mathbf{g}_1, \dots, \mathbf{g}_n$ satisfy Axiom R, then \mathbf{g}_A satisfies R.
- Are feature-based explanations even useful?

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

- Axiomatic Aggregation
 - If $\mathbf{g}_1, \dots, \mathbf{g}_n$ satisfy Axiom R, then \mathbf{g}_A satisfies R.
- ② Are feature-based explanations even useful?
 - Consider counterfactuals, natural language explanations, etc.

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

- Axiomatic Aggregation
 - If $\mathbf{g}_1, \dots, \mathbf{g}_n$ satisfy Axiom R, then \mathbf{g}_A satisfies R.
- Are feature-based explanations even useful?
 - Consider counterfactuals, natural language explanations, etc.
- Working with medical experts to find a g*

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

- Axiomatic Aggregation
 - If $\mathbf{g}_1, \dots, \mathbf{g}_n$ satisfy Axiom R, then \mathbf{g}_A satisfies R.
- Are feature-based explanations even useful?
 - Consider counterfactuals, natural language explanations, etc.
- Working with medical experts to find a g*
- Multi-Objective optimization

Summary

- Aggregate local explanations with classical rank aggregation or via convex combination can be useful
- Aggregating Shapley value explanations results in a Shapley value
- We can learn aggregate explanations to lower sensitivity and complexity

Future Work

- Axiomatic Aggregation
 - If $\mathbf{g}_1, \dots, \mathbf{g}_n$ satisfy Axiom R, then \mathbf{g}_A satisfies R.
- Are feature-based explanations even useful?
 - Consider counterfactuals, natural language explanations, etc.
- **3** Working with medical experts to find a g^*
- Multi-Objective optimization
 - Resulting Setup

max faithfulness(\boldsymbol{g}_{agg}) + sensitivity(\boldsymbol{g}_{agg})

