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Overview

e With the rise of deep learning, network interpretability of deep networks has emerged as a challenging problem. An information-theoretic understanding

of deep networks is particularly lacking.

e Current methods of estimating mutual information do not consider the low between individual neurons.

e We propose a method utilizing MINE |1] to estimate the mutual information between neurons in a network. We accomplish this by removing the
redundant information within a layer from the information calculated between a layer and an individual neuron.

e We also explore how this technique can be utilized to create feature attributions to provide better insight into how the model prioritizes input features.

Information Measures Approach

e Mutual Information (MI) is defined as:
I(X,Y)=H(X)—H(X|Y) and is the reduc-
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tion of uncertainty in X given Y. We wish to . ®
estimate I(X;; Qr), the MI between 2 nodes o
in a trained network. ®
Since calculation of this quantity is in- ®
tractable, we exploit the MINE |1| estimator
which uses a statistics network Ty to approx- e ¢
imate the following:
o e

I(X, Z) = sup
0coO

— log( ﬂpx P = [GTG:)
(1) Since Ty shares model parameters between the
) redundancy (A) and relevance (B) components,
we derive a weaker least upper bound. To better
understand distributional interactions, we define
the following:
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We decompose this approximation to give us
I(X;; Qr), where X; is a feature of the in-
put vector and () is any quantity of interest.
That is, we leverage an approximation |2|:

i—1 A= ﬁP}XQk Ty] — log( 41@?6@1@@14 [eTQ])
I(X;; Q) = I(X; ka)_ﬁzl(‘){?ﬁ‘){j) (2)
j=1 = J[PX X, [TH] log( £sz- QPx, [eTQ])

where 3 can be used to tune the interactive
effect of MI between features.

The first term is referred to as the relevance
of X to O and the second term is called re-
dundancy, as it removes interactions between
dimensions of the input.

We combine these parameters to derive NIF:

NIF =sup (A - 523 > 1(X;, O, Ty) (3)
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Experimentation

To prove the fidelity of NIF, we run experiments to extract a feature attribution to explain the
original model output and to prune the network for compression.
We conducted our experiments on the Iris and Banknote dataset.

Implications for Model Compression Feature Attribution

e Often in neural network training, many neu-
rons learn information which is not necessary
for final prediction

e Such useless neurons can be removed as they
only lead to unnecessary computation without
affecting model accuracy

e NIF naturally enables detection of such neu-

e We evaluate the feature attribution provided
by NIF against current techniques.

e Via the K-S test, we observe that the raw mu-
tual information and the NIF attribution are
likely drawn from the same distribution.

. . . . ATTRIBUTION K-S STATISTIC P-VALUE
rons from an information-theoretic standpoint
— We identify neurons that have zero informa- NIF 1.0 0.011
tion flowing through them SHAP|3] 0.75 0.107
I1G[4] 0.25 0.996

e Zeroing out weights and biases of these neu-
rons does not affect classification accuracy:.

Multilayer Networks

e We conducted further experiments on deeper
neural architectures.

e We observed similar behaviors in communities
and zero information neurons.
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Feature Attribution

e To recover a feature attribution, we find all
the possible paths between a feature of inter-
est and each of the outputs.

o Mathematically, the element A; ; of our attri-
bution matriz A € RY%¢ (where d is the num-
ber of features and c is the number of classes)
can be given as:

Z Z H [ start s end)

C; pi; €EP lEp;;

(4)

where, [P is the set of all directed paths from
input x; to class y; in the NIF network, and
L is the set of links on each path p € P.

Conclusion

e We have proposed NIF, Neural Information
Flow, a new metric for measuring informa-
tion flow through deep learning models.

Merging a dual representation of Kullback-
Leibler divergence and classical feature se-
lection literature, we find that NIF provides
insight into which information pathways are
crucial within a network.

We show that the feature importance cap-
tured by NIF rivals prior techniques from an
information-theoretic perspective.

NIF can also allow us to leverage fewer pa-
rameters at inference time, since we can re-
move parameters deemed useless by the NIF
without loss of accuracy.
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